Quadratic lifespan and growth of Sobolev norms for derivative Schrödinger equations on generic tori

نویسندگان

چکیده

We consider a family of Schrödinger equations with unbounded Hamiltonian quadratic nonlinearities on generic tori dimension d≥1. study the behavior high Sobolev norms Hs, s≫1, solutions initial conditions in Hs whose Hρ-Sobolev norm, 1≪ρ≪s, is smaller than ε≪1. provide control Hs-norm over time interval order O(ε−2). Due to lack conserved quantities controlling norms, key ingredient proof construction modified energy equivalent “low norm” Hρ (when ρ sufficiently high) nontrivial This achieved by means normal form techniques for quasi-linear involving para-differential calculus. The main difficulty possible loss derivatives due small divisors arising three waves interactions. By performing “tame” estimates we obtain upper bounds higher Hs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generic Behavior of Solutions to Some Evolution Equations: Asymptotics and Sobolev Norms

In this paper, we study the generic behavior of the solutions to a large class of evolution equations. The Schrödinger evolution is considered as an application. In this paper, we develop methods to control the generic behavior of solutions to various evolution equations. The word “generic” will refer to the “coupling constant” that appears in front of the diagonal operator (a differential oper...

متن کامل

Polynomial growth of the derivative for diffeomorphisms on tori

We consider area–preserving diffeomorphisms on tori with zero entropy. We classify ergodic area–preserving diffeomorphisms of the 3–torus for which the sequence {Df}n∈N has polynomial growth. Roughly speaking, the main theorem says that every ergodic area–preserving C2–diffeomorphism with polynomial uniform growth of the derivative is C2–conjugate to a 2–steps skew product of the form T ∋ (x1, ...

متن کامل

Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds

We give a new proof of a theorem of Bourgain [4], asserting that solutions of linear Schrödinger equations on the torus, with smooth time dependent potential, have Sobolev norms growing at most like t when t→ +∞, for any > 0. Our proof extends to Schrödinger equations on other examples of compact riemannian manifolds.

متن کامل

Lagrange, central norms, and quadratic Diophantine equations

As is often the case, some results get rediscovered over time. In particular, some rather striking results of Lagrange are often recreated. For instance, in [6], a result pertaining to the Pell equation for a prime discriminant was recast in the light of nonabelian cohomology groups. Yet, in [1], the authors acknowledged the fact that the result “has been discovered before,” and provided an ele...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2022

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2021.12.018